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TRANSIENT RESPONSE OF TWO FLUID-COUPLED CYLINDRICAL ELASTIC
SHELLS TO AN INCIDENT PRESSURE PULSE

INTRODUCTION

In order to gain physical insight in the response as well as to
provide a data base for the development of general numerical methods for
predicting the underwater explosion response of fluid coupled shell
systems such as the double hull section of a submarine, the transient
response of systems of fluid coupled elastic shells of simple con-
figurations to the excitations of incident pressure pulse are being
analytically investigated. The case of two concentric spherical
elastic shells lends itself to the classical treatment of the
separation-of-variable and integral transform techniques and accurate
solutions have been obtained by a successive integration scheme [1].
It was found that a thin outer shell tends to be transparent to the
incident pulse.

In the present report, a solution method and results for the case
of two concentric cylindrical elastic shells of infinite length are
presented. This 1is also one of the cases in which it is possible to
apply the separation-of-variable and Laplace transform techniques to
simultaneously solve the wave equations governing the wave motions in
the fluids and the equations of motion of the elastic shells. The
corresponding problem for a single cylindrical shell has been widely
studied and the results have been reviewed and summarized in many
articles, e.g., references [2,3]. Here, it was more convenient to
obtain the inverse Laplace transform for the transient solution
indirectly using a integral equation method [4] or a differential-~

Manuscript submitted June 30, 1978.
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integral equation method [5]. It is also possible to formulate the
present double~cylindrical-shell problem such that the same integral
equation method can be used to calculate the transient shell response.

Results are obtained for a system of two steel shells submerged
in water. Similar to the spherical case [1l], it is also found that a
thin outer shell does not change significantly the basic response
feature of the inner shell and that its primary effects are to reduce
the axi-synmetric (breathing) and translational motions of the inner
shell. These lower mode effects can be estimated by simple formulae.
DESCRIPTION OF THE PROBLEM

Figure 1 sketches the submerged fluid-coupled cylindrical shell
system and the incident plane pressure wave. The fluid surrounding the
outer shell and that between the two shells are considered to be ideal
compressible fluids in linear wave motions and can be characterized by
their unperturbed mass densities and sound speeds (pe, ce) and (p, c)
respectively. The shells are initially concentric. In this study,
the strength of the incident wave is sufficiently weak such that the
shell deflections are elastic and small and deviation from the con-
centricity remains negligible for the time duration of interest. The
middle surface radii, thickness, mass densities, Young's moduli and
poisson's ratios of the outer and inner shells are (ae, he, p:, Ee, ve)
and (a,h,ps,E.v), respectively. The z-coordinate of the cylindrical
coordinate system (r, 6, z) coincides with the axis of the shells in its
unperturbed position. The incident plane wave front is also parallel to
the z-axis and therefore all response entities do not vary with respect

to z.




The deflections of the inner shell in the r- and 6- direction, ‘
normalized with respect to the outer shell radius ae, are denoted by w

and v respectively and those of the outer shell by w® and v© respectively. 1
The deflections in the z-direction do not enter into the present two-
dimensional system of equations of motion. The total pressure field
exterior to the outer shell is denoted by pe(r, 6, t) and that between
the shells by p (r, 8, t) where t designates time. The following

dimensionless parameters are also used in the mathematical formulation: ’

R=r/a®, T=c%t/a®, ©=a/a% n-= c, 1-0),

c_ =clc, o_=o0/0% M=0%/(oh), M =% (och%), *
P = p/[0%(c®)2], P°=p®/[0%(c)2], I~z (h/a)2, I°=35 (h%/a®)2, :

c2= E/lo, (1)) (e%)2], €2 = £/ o] [1-()21(HH2 | ,

e - - (2 e _ ~2
ao ag Mo Mo 0, ’O (052 +O Ce 3
a_ = n? C2(1+I) af = n2 c2(1+1%) 1)
n 4 n e 4
2
= c2(14n2) (14n21), R c* n?2 (1-n2) ,
2
€ « g2 2 21e e _ 1eny _2¢q_-2
fn Ce (14n<) (14n*<1®), W I Ce n“(1-n°) ,
Bl 2,3, ven
P® and P satisfy the wave equations
2
VZPe - ___3 » (2)
3 T2
and
S?P
V2P = c:
3 T2 3)




respectively, where V2 is the Laplacian operator. The boundary
conditions of the problem are that P® satisfies the radiation condition

at far field and that

P ape a%w®
O i B e at R=1 (4)
3 T?
and
2
LR T (5)
aT?
All quantities except the incident press: field have quiescent

initial conditions.

A Laplace transform pair is defined as

v (0,8) -[ w (0,T) e %% d

w (6,T) 'j 5 w (8,8) P
Y- oo

(6)

where y lies to the right of all singularities of w in the complex s-

plane and i = (—1)1,2.

Due to the circular geomtry of the problem, the solutions can be

expanded in Fourier series as the following:

P(R,0,T) = L P (R,T)cos n 6
n=0 "

P®(R,0,T) = P: (R,T)cos n 6

n= L]

w (8,T) = ¢ wn(T)cos n o (7)
n=0

v (6,T) = ¢ va (T)sin n 6
n-£

w® (8,T) - v (T)cos o ©




-]
vo (8,T) = v° (T)sin n 8
n
n=1

This type of expansion is not suitable for the pressures and shell
accelerations at early time [3,4]. Otherwise, it greatly facilitates
the calculation of the responses of the shells.

For the solution scheme to be used here, any linear elastic theory J
of the cylindrical shell is applicable. In order to juxtapose solutions
to those for a single shell previously obtained in Ref. [4], the version
of shell equations of motion used therein is also used here. In the 1

Laplace transform domain, they are }
- 2 P
Mc (2% + o) P (z,8) 4

w -
44 2.2
et F *nc 8° + My 4
(8)
i e 2 e fren, 2 ~ s
- . M (s +a) [P (1,8) - P (1,s]
- st + fe 82 + ue
n n
n= 0, % 2y v 4
and
2,2 T | 2 2 Y
(z%s +un) R (14n21) v
9

(82 + o) V¢ = -n €2 (14n21%) W&
n n e n

Bk, 2,3, vec

The total pressure field exterior to the outer shell consists of

the pressure due to the incident wave and those due to scattering and
radiation by the outer shell. An arbitrary incident plane pressure

wave impinging the outer shell at (6=0, R=1l) at T=0 can be expressed




by the following series [4].

Fi (R,8,8) = f(s)e_snf

o enIn(sR)cos n o (10)

where

f(s) is the Laplace transform of the temporal characteristics of the
incident wave, In(sR) is the modified Bessel function of th- first kind
and

e =1 forn=20
n

(11)
=2 forn>0.

SOLUTIONS IN THE LAPLACE TRANSFORM DOMAIN
It can be readily shown that the solutions to the system of Eqgs.

(2) through (11) are:

I‘(B) K_(sR) P
f: (R,8) = f(8) e_sen [ In(sR) -2 1 ] - Kn(sR) (12)
Kn(s) Kn(s)
g L HEC
P (R 8) = ¥ Kn(crcs) -y Kn(crs) pc In(crsR)
i A (s pece
n
—_— L —e %
i Swnln (crs) o swn In(cr’,S) (Qc e) Kn (crs R) (13)
An(s) Dec
Vo= M(s24ad) [(g¥s"Ht c2e4u) A (e) (0°c®)/ (pe)
f(s)e B¢
. 2.2 g (14)
Mgs (%8 +un)Bn(8)] 5 )
and
f(s)e-se
g 2.2 Tials Lo o (15)
¥ we (c2s +un)(s +un) c. An(s)
6




where Kn(s) is the modified Bessel function of the second kind, the

prime denotes differentiation of the Bessel functions with respect to

their arguments,
An<s)-s(c“s“++nc252+un)[x;(s)(s“++:s2+u§)-axn<s>n?(s2+a:>1An(s)(pece)/(pc>
~s2K " (8) [M° (s2+a) (z4s"+_r2624u )G_(8) Mg (t2624a ) (s4+48620°)B (s) ]

#0083 (126240 ) (s240%) [K_(8)B_(8)+K_()L_(8) (0e)/ (0%c5)]  (16)

A (8)=1_(c_t8)K (c_8)-I_(c_s)K (c ts) 17

B_(8)=I_(c Zo)K (c_8)-I_(c 8)K (c_s) (18)

G, (8)=I_(c _8)K_(c_t8)-I (e _T8)K_(c_8) (19)
and

L (8)=1 (c_8)K (c t8)-I (c ts)K (c s) . (20)

* and ;: can be found from Eq. (9). Strains and stresses of the
shells can be computed using appropriate strain-deflection and stress-
strain relationships.

With use of the Tauber's theorem of Laplace transform [16], some
of the asymptotic behaviors of the shell responses at late time can
readily be revealed from Eqs. (14) and (15). Specifically, for the

case where the incident wave Pi is a unit step wave, i.e., f(8) = 1/s,

-M° (22 (1-52)+2p_t2M] (21)

wg(T) =

20202 (1-r2 2 2M02
Tw  C2C2C2(1-£2)42p MCP42p r2MC2




-Zpr;MMe (22)

i oadelling 20202 (1-r2 Mec2? 2mc2
T Crc Ce(l—; )+29r C +2prc MCe
- -r2 2
o 4ME[(1-52)40.5p M(1+2%)] 23)
rn 207D 20420 (1452) (MO )40 MMT [L4c74e (1-07) ]
and
. (24)
wl(T) = -AprMMe

Toew  2(1-22) (24%)420_(1422) MHM°) +p MM® [14724c C1-22)]

where the dot denotes differentiation with respect to T.

Eqs. (21) and (22) give the late time shell deflections long after

the incident wave has engulfed the outer shell and they can also be

obtained by static analyses. Eqs. (23) and (24) are expressions for the

late time translational velocities of the shells in the direction of
propagation of the incident wave. It can be shown that the only
condition under which ;l(w) = ;i (») is prM=2, i.e., when the inner
shell is neutrally buoyant in the interior fluid. Otherwise, the
ratio between them depends only on the buoyancy of the inner shell and
the radius ratio ¢. In Fig. 2, it can be seen that a positively
buoyant inner shell (prM > 2) translates faster and a negatively
buoyant one (prM < 2) translates slower than the outer shell at late
time.

Formulae (21) through (24) can be used to facilitate parametric
studies of the effects of various shell and fluid properties on the

axisymmetric and translational responses of the shells. They also

provide asymptotic checks for the numberical calculations.

¥
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THE INVERSION OF THE TRANSFORMED SOLUTIONS

The transformed solutions in Eqs. (12) through (15) are highly
complicated functions of 8. To find their inverse transforms, it is
more convenient to rearrange them such that the solutions in the time
domain can be obtained by numerically solving a Volterra type of
integral equation the kernel of which can be accurately calculated.
This procedure has been demonstrated to be quite effective in previous
studies of the single cylindrical shell problem [4,5].

To proceed, Eq. (15) is rearranged to assume the foliowing

form:
i - Mos(s242) K (s) o |\ MEs(E?8%4a) B (s)
wn(s) iE wn(s) e e..,” -< ee A _(8)
(s“++n82+un)l<n(8) p c?(c"s"anzszﬂnn) n
2,2 2 s
ol Mzs(c2e?+u ) BG8) . M®s(s +a ) G (s)
pece (c“s“+fn;282+un) An(s) (;ece> (s“++:52+u:) Ah(a)
e 2 Hcs(c282+un) Mes(92+u:) L (s)
(pece> (chs"+t t2e24u )  (s"+178247) A,(8)
3 prM(;282+un) Me(sz+u:) 1 f(s)e-sen (25)
(;“s“++nc252+un) (s“++:sz+u:) ciAn(s) 8 Kn(s) g
The Nielsen's function,
Y+1” K
W (l’T) = L (B) +1 STdB (26)
27ni 2 ¥
K (8)
-foo n

has been accurately computed and tabulated by Nielsen [7]. The
resultant of the incident and scattering transient pressure acting on

a rigid and motionless circular cylinder impinged upon by an incident




plane wave,

has also been accurately computed with the aid of the Nielsen's

yHiw f(s)e_se

i sKn(s)

function [4].

and

the integrands are single-valued and analytic in the complex s-plane
since it can be shown that An(s), Bn(s). Gn(s) and Ln(s) defined in

Eqs. (17) through (20) are single-valued and analytic.

In the following inverse Laplace transtform integrals,

prides MFB(92+ue) eST
a 1 n
Fn(T)-T/ e ds ,
y-iw 8 ++ns +un
b 1 yHe Mcs(z282+a o) B, (s) ST
r (T) = i ( ) = s A @ e
Vg (g¥st+t 8% )'n

e

- e 2, €
iy o o e e e, T,
n 2m 45 %" (a“++ o2 ® 5 A (s)

d 1 /‘Y-Hw Ml;s(c252+an) Mes(82+a ) L (s)
r (r) + — ( )
n 2ndi & e 4 4 242 L 2
y=1i P Yo (¢'s ++n; 8 +un) (s ++ns +un) n
Y+io &
e 1 p M(c252+un) M§(32+un) esT
r (r) = =—- L4
n 2ni

e bl 2,2 41, 2, € 2
Y-1 (¢'s ++n; 8 +un) (s ++ns +un) crAn(B)

(27)

(28)

(29)

(30)

(31)
ds,

(32)

Their poles are

determined by the zeros of An(s) and the 4th order polynomials from the

shell equations of motion.

10

By the relationships between the Bessel

X R A 4




< ks

B a0

functions Jn and Yn and the modified Bessel functions In and Kn’

%An(tis) - J;(cr;s)Y;(crs) & J;(crs)y;(cr;a) (33)

where the cross product frequently occurs in applied problems
involving an annular region and therefore its zeros have been studied
and calculated by many authors. Ref. [8] is one of the many
publications presenting tabulated tables. The zeros of this cross
product are infinite in number and are all real and simple, hence
Ah(s) has infinite number of conjugated pairs of imaginary zeros.

The integrals in Eqs. (28) through (32) can now be accurately
evaluated by the customary method of residues and they are sums of
sine of cosine functions of T. Thereupon, the inverse Laplace trans-

form of Eq. (25) is a Volterra integral equation of the second kind,

T
"n(T)'/ Sn(T-T)Wn(T)dT = Fn(’l') (34)
0
where
b c d
s (T) = An('l‘) =4 R ST QY &L (x) = r (T), (35)
* e rig
Fh(T) i/f Fn (T-1) Pn (1)drT, (36)
0
¥ a a
An(T) -/ I‘n (T-1) Wn(l,T)d‘r - I‘n (1), (37)
0
and
T
wn('r) -/ An('l‘-'r) r: (1)dr . (38)
0
11
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Fn(T) and Sn(T) are continous and well behaved functions of T. The
numercial methods for solving Eq. (34) have been extensively studied
and well developed [9]). The solution for ws(T) can be likewise
calculated and it is also evident form Eq. (9) that vn(T) and v:(T)
can be obtained by simple convolutions.
RESULTS AND DISCUSSIONS

The integrals in Eqs. (36) through (38) are evaluated numerically
by the trapexoidal rule. Eq. (34) is solved using a simple linear
multistep method in which the integral is also computed by the
trapezoidal rule. Results are obtained for a case in which both shells
are made of steel and both fluids are water. The material properties
and dimensions involved are such that

e, =g, =L, c? = ci = 12.58121

r
M® = 22.09450 M = 4.41890 (39)
h€/a® = 0.00581 h/a = 0.02905
¢z =20.8 n=20.2

The incidence is a step wave with f(s8) = 1/s. For all integrations, a
time step AT = 0.0125 is used.

In all subsequent figures, the present solutions are plotted in
dotted lines and juxtaposed to those previously obtained in Ref. [4]
and plotted in solid lines for the case wherein the outer shell is
absent.

Figure 3 shows the results for the wo's, wl's and wz's. It can

be seen that the numerical results for the wo's and wl's correctly

approach their asymptotic values as calculated by Eqs (22) and (24)

12
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respectively. At early time, the presence of the outer shell seems
to have little effect.

Physically, the motion of the outer shell starts at T = 0 while
that of the inner shell at T = n = 0.2. This is also evident from the
mathematical properties of Eqs. (17), (32) and (36). Their large time
translational velocities from Eqs. (23) and (24) are respectively
WS(=) = -1.17516 and w (=) = -1.30361. If the magnitude of the
incident pressure is such that p%[be(ce)zl =1 x 10-3, it can be
estimated that at T=10 the relative displacement between the axes of
the two shells is still one order of magnitude smaller than the
thickness of the inner shell. Therefore, for such an instance, the
deviation from concentricity of the outer and inner shells would be
undoubtedly negligible.

The present v, differs slightly from that of the single shell
case and the presence of the outer shell seems to have reduced the
rate of decreasing of w, at large time from its peak value.

The wn's for higher n's are plotted in Figures 4 and 5. For
0 < T‘é 2, the present w3 through L are almost the same as those for
the case wherein the outer shell is absent. Similar to the single-
shell case, these wn's have markedly different oscillatory characteristics
for T‘> 2 and their oscillation amplitudes are decreased and the
periods increased by the presence of the outer shell. Since the
magnitudes of these wn's are much smaller than those of the lower n
terms to begin with, the differences caused by the outer shell would
be quite insignicant for the calculation of w(6,T). It can also be

observed from Figures 3, 4 and 5 that w, converges quite fast and it




would suffice to use only eight terms in the series of Eq. (7) to
calculate the transient displacements, velocities and strains of the
shells for all values of 6 and T. To calculate the early time
acceleration and pressure, it is a customary practice to transform

Eq. (7) by Poisson's summation formula into an integral which is then
asymptotically evaluated for large s and therefore small T by the saddle
point method. This has been elegantly carried out for the single-shell
case in Ref. [10]. The application of this procedure to the double-
shell case is rather complicated and is outside the scope of the present
report.

?1gure 6 shows the time histories of the radial velocities at
various locations of the inner shell. The presence of the outer shell
causes little change of the early time values and the profiles of
;(O,T). Other than 6 = 7/2, the values of ;(G,T) at later time are re-

duced primarily due to the reduction of the w, term previously shown in

1
Figure 3.
The hoop stress resultant Ne(B,T)(force per unit length)at the

middle surface of the inner shell is calculated by

v
(w + Y (40)

N_(6,T) =
. 1-v2

and its time histories at 6 = O, 7/2 and 7 are plotted in Figure 7.
Again, the shielding of the outer shell has little effect on the
stresses at very early time and does not change the profiles of the
stress time histories. At later time, the stresses are reduced due to
the reduction of the w, term. The present results also clearly

0

demostrates the generation of circumferential stress waves at the inner

14 !




ae g

shell as can be observed from the repeated appearance of peaks in the
stress time histories at appropriate time intervals. These stress
waves have the same features as those of the single-shell case dis-
cussed in Reference [3,4]. They encircle the cylinder with the
dilatational wave speed in both directions. Since the attenuation due
to radiation is small, many circum-navigation may be observed.

Similar to the double-spherical-shell case [1], it could also
be summarized here that the primary effects of a thin outer shell are
to reduce the breathing and translational motions of the inner shell
and these could be simply calculated from Eqs. (22) and (24).
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